
Moving Target D* Lite∗

Xiaoxun Sun William Yeoh Sven Koenig
Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781, USA
{xiaoxuns, wyeoh, skoenig}@usc.edu

ABSTRACT
Incremental search algorithms, such as Generalized Fringe-
Retrieving A* and D* Lite, reuse search trees from previ-
ous searches to speed up the current search and thus often
find cost-minimal paths for series of similar search problems
faster than by solving each search problem from scratch.
However, existing incremental search algorithms have lim-
itations. For example, D* Lite is slow on moving target
search problems, where both the start and goal states can
change over time. In this paper, we therefore introduce
Moving Target D* Lite, an extension of D* Lite that uses
the principle behind Generalized Fringe-Retrieving A* to re-
peatedly calculate a cost-minimal path from the hunter to
the target in environments whose blockages can change over
time. We demonstrate experimentally that Moving Target
D* Lite is four to five times faster than Generalized Adaptive
A*, which so far was believed to be the fastest incremental
search algorithm for solving moving target search problems
in dynamic environments.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and
Search]: Graph and tree search strategies

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
D* Lite, Dynamic Environment, Generalized Fringe-
Retrieving A*, Hunter, Incremental Search, Moving Target
Search, Path Planning, Video Games

∗We thank Maxim Likhachev for sharing his insights on the
properties of D* Lite with us. This material is based upon
work supported by, or in part by, NSF under contract/grant
number 0413196, ARL/ARO under contract/grant number
W911NF-08-1-0468 and ONR in form of a MURI under con-
tract/grant number N00014-09-1-1031. The views and con-
clusions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the sponsoring orga-
nizations, agencies or the U.S. government.

Cite as: �
���� ������ -\ 7���� O� ���� �� N�
� ��	 �� D
����� Proc.
of 9th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2010)� ��� 	��
�<� D����<�� 7���E������ 7��< ��	
��� #�	��%� ���� &4F&=�)4&4� �
�
��
� 6���	�� ����
6
������� c©)4&4� (��������
��� 0
��	���
�

� ���
�
�
�� ������ ��	
���������� ������� #�����
������
��%� ��� ������ �������	�

1. INTRODUCTION
A moving target search problem is a planning problem

where a hunter has to catch a moving target [5]. One ap-
plication of this area of research is computer games, where
computer characters (= hunters) has to chase or catch up
with other characters (= targets), typically in gridworlds
whose blockages can change over time [5, 13, 9]. The moving
target search problem is solved once the hunter and target
are in the same state (= cell). The hunter has to deter-
mine quickly how to move. The computer game company
Bioware, for example, recently imposed a limit of 1-3 mil-
liseconds on the search time [1]. There are generally two
classes of approaches for solving moving target search prob-
lems with search algorithms:

• Offline approaches take into account all possible con-
tingencies (namely, movements of the target and
changes in the environment) to find the best plan for
the hunter, for example, using minimax or alpha-beta
search [9]. Unfortunately, offline approaches do not
scale to large environments due to the large number of
contingencies.

• Online approaches sacrifice optimality for smaller com-
putation times by interleaving planning and move-
ment, for example, by finding the best plan for the
hunter with the information currently available and
allowing the hunter to gather additional information
while moving. For example, they can determine a cost-
minimal path (or a prefix of it) from the current state
of the hunter to the current state of the target in the
current environment. This allows them to find plans
for the hunter efficiently while being reactive to move-
ments of the target and changes in the environment.
Examples include real-time search algorithms [5] and
incremental search algorithms [13].

Most real-time search algorithms limit the lookahead of
each search and thus find only a prefix of a path from the
hunter to the target before the hunter starts to move. Their
advantage is that the hunter starts to move in constant time,
independent of the number of states. Their disadvantage is
that the trajectory of the hunter can be highly suboptimal
and that it is difficult to determine whether there exists a
path from the hunter to the target, although there are recent
exceptions [16]. Furthermore, they do not scale to large en-
vironments due to their memory requirements that typically
grow quadratically in the number of states [2]. Incremental
search algorithms, on the other hand, find a path from the

67

67-74

hunter to the target before the hunter starts to move. If
they run sufficiently fast, they provide alternatives to real-
time search algorithms that avoid their disadvantages. We
therefore investigate incremental search algorithms in this
paper. There are generally two classes of incremental search
algorithms:

• Incremental search algorithms of the first kind use
information from previous searches to update the h-
values to make them more informed over time and fo-
cus the (complete) searches better. Examples include
MT-Adaptive A* [8] and its generalization Generalized
Adaptive A* (GAA*) [12], which build on an idea in
[4].

• Incremental search algorithms of the second kind
transform the previous search tree to the current
search tree. The current search then starts with the
current search tree instead of from scratch. Exam-
ples include Differential A* [15], D* [11], D* Lite [7],
Fringe-Retrieving A* (FRA*) [13] and its generaliza-
tion Generalized FRA* (G-FRA*) [14].

Most incremental search algorithms of the second kind
were designed for search problems with stationary start
states or in static environments (whose blockages do not
change over time). Thus, they are not efficient for mov-
ing target search problems in dynamic environments (whose
blockages can change over time) since both the start and
goal states can change over time for moving target search
problems. For example, D* Lite can shift the map to keep
the start state stationary but then cannot reuse much of the
information from previous searches and can be slower than
running A* from scratch [8]. In this paper, we therefore in-
troduce Moving Target D* Lite (MT-D* Lite), an extension
of D* Lite that uses the principle behind G-FRA* to repeat-
edly calculate a cost-minimal path from the hunter to the
target in dynamic environments. MT-D* Lite does not shift
the map to keep the start state stationary and is four to five
times faster than GAA*, which so far was believed to be
the fastest incremental search algorithm for solving moving
target search problems in dynamic environments.

2. PROBLEM DEFINITION
Although all proposed search algorithms can operate on

arbitrary directed graphs, for ease of illustration, we de-
scribe their operation on known four-neighbor gridworlds
with blocked and unblocked states. The hunter can move
from its current unblocked state to any unblocked neighbor-
ing state with cost one and to any blocked neighboring state
with cost infinity. It always follows a cost-minimal path
from its current state to the current state of the target un-
til it reaches the current state of the target, which is often
a reasonable strategy for the hunter that can be computed
efficiently. We make no assumptions about how the target
moves.

We use the following notation: S denotes the finite set
of all (blocked and unblocked) states, sstart ∈ S denotes the
current state of the hunter and the start state of the search,
and sgoal ∈ S denotes the current state of the target and the
goal state of the search. c(s, s′) denotes the cost of a cost-
minimal path from state s ∈ S to state s′ ∈ S. Succ(s) ⊆ S
denotes the set of successors of state s ∈ S, and Pred(s) ⊆ S
denotes the set of predecessors of state s ∈ S. The cost of

moving from state s to its successors or from its predecessors
to state s can be infinity. In gridworlds, the predecessors and
successors of a state are thus its (blocked and unblocked)
neighbors.

3. BACKGROUND
We now provide the background on A*, Generalized

Fringe-Retrieving A* and D* Lite that is necessary to un-
derstand the proposed search algorithms, closely following
the descriptions in [13, 14].

3.1 A*
A* [3] is probably the most popular search algorithm

in artificial intelligence and the basis of all search algo-
rithms described in this paper. A* maintains four values
for every state s ∈ S: (1) The h-value h(s, sgoal) is a user-
provided approximation of c(s, sgoal). The h-values have to
be consistent [10]. (2) The g-value g(s) is an approxima-
tion of c(sstart, s). Initially, it is infinity. (3) The f-value
f(s) := g(s) + h(s, sgoal) is an approximation of the smallest
cost of moving from the start state via state s to the goal
state. (4) The parent pointer par(s) ∈ Pred(s) points to the
parent of state s in the search tree. Initially, it is NULL.
The parent pointers are used to extract a cost-minimal path
from the start state to the goal state after the search ter-
minates. A* also maintains two data structures: (1) The
OPEN list contains all states to be considered for expansion.
Initially, it contains only the start state with g-value zero.
(2) The CLOSED list contains all states that have been ex-
panded. Initially, it is empty. Actually, none of the search al-
gorithms described in this paper require a CLOSED list but,
for ease of description, we pretend they do. A* repeatedly
deletes a state s with the smallest f -value from the OPEN
list, inserts it into the CLOSED list and expands it by per-
forming the following operations for each state s′ ∈ Succ(s).
If g(s) + c(s, s′) < g(s′), then A* generates s′ by setting
g(s′) := g(s) + c(s, s′) and par(s′) := s and, if s′ is not
in the OPEN list, inserting it into the OPEN list. A* ter-
minates when the OPEN list is empty or when it expands
the goal state. The former condition indicates that no path
exists from the start state to the goal state, and the lat-
ter condition indicates that A* found a cost-minimal path.
Therefore, one can solve moving target search problems in
dynamic environments by finding a cost-minimal path with
A* from the current state of the hunter to the current state
of the target whenever the environment changes or the tar-
get moves off the known path.

3.2 G-FRA*
Generalized Fringe-Retrieving A* (G-FRA*) [14] is

an incremental search algorithm that generalizes Fringe-
Retrieving A* (FRA*) from gridworlds to arbitrary directed
graphs. We use the principle behind G-FRA* in one of the
proposed search algorithms. G-FRA* cannot solve mov-
ing target search problems in dynamic environments but it
solves moving target search problems in static environments
by finding a cost-minimal path with A* from the current
state of the hunter to the current state of the target when-
ever the target moves off the known path. Each A* run is
called a search iteration. In each search iteration, G-FRA*
first transforms the previous search tree to the initial search
tree, which consists of the initial OPEN and CLOSED lists.
It then starts A* with the initial OPEN and CLOSED lists

68

1 2 3 4 5

0 1 2 6
S G

3 7

4

5F

G

B

C

D

E

5 6 7
A

1 2 3 4

(a) Search Iteration 1

1 2 3 4 5

0 1 2 6
S
3 7

G
4

5

5 6 7

G

3 4
A

B

C

D

E

F

1 2

(b) Target Moves off Path

3 4 5

2 6
S
3 7

G
4

5

D

E

F

G

7
A

B

C

3 4 5 61 2

(c) After Step 2

4 3 4 5

3 2 6
S
3 7

G
4

5F

G

B

C

D

E

5 6 7
A

1 2 3 4

(d) After Step 4

Figure 1: Trace of G-FRA*

instead of from scratch. Thus, G-FRA* inherits the proper-
ties of A*, for example, it finds cost-minimal paths from the
current state of the hunter to the current state of the target.

The initial search tree is the subtree of the previous search
tree rooted at the current start state. Thus, the initial and
previous search trees are different if the hunter moved. To
determine the initial OPEN and CLOSED lists, G-FRA*
maintains a DELETED list, which contains all states that
are in the previous search tree but not the initial search tree.
Then, the initial CLOSED list contains those states that are
in the previous CLOSED list but not the DELETED list,
and the initial OPEN list contains both (O1) those states
that are in the previous OPEN list but not the DELETED
list and (O2) those states that are in the DELETED list and
are successors of states in the initial CLOSED list.

Figure 1 illustrates the steps of G-FRA*. Blocked states
are black, and unblocked states are white. For ease of illus-
tration, we use h-values that are zero for all states. The first
search iteration of G-FRA* runs A* from the current state
C2 of the hunter, labeled S, to the current state C6 of the
target, labeled G (see Figure 1(a)). The g-value of a state
is shown in its upper left corner. The arrow leaving a state
points to its parent. The CLOSED list contains B2, B3, B4,
B5, B6, C2, C3, C4, C6, D4, E4 and F4, and the OPEN list
contains D6. A state is shaded iff it is in the OPEN list. The
cost-minimal path is C2, C3, C4, B4, B5, B6 and C6. The
hunter moves along this path to C4, at which point in time
the target moves off the path to D6 (see Figure 1(b)). Since
the target moved off the path, G-FRA* finds a cost-minimal
path from the current state C4 of the hunter to the current
state D6 of the target using the following steps, where the
previous start state is C2 and the previous goal state is C6.

• Step 1 (Starting A* Immediately): G-FRA* per-
forms the following operations in this step if it did not
terminate in Step 3 (Terminating Early) in the previ-
ous search iteration. If the current start state is the
same as the previous start state and the current goal
state is not in the CLOSED list, G-FRA* runs A* with
the OPEN and CLOSED lists, uses the parent pointers
to extract a cost-minimal path from the current start
state to the current goal state and terminates the cur-
rent search iteration. If the current start state is the
same as the previous start state and the current goal
state is in the CLOSED list, G-FRA* uses the parent
pointers to extract a cost-minimal path from the cur-
rent start state to the current goal state and terminates
the current search iteration. In our example, G-FRA*

executes the next steps since the current start state is
different from the previous start state.

• Step 2 (Deleting States): G-FRA* sets the par-
ent pointer of the current start state to NULL, deter-
mines the DELETED list and deletes all states in the
DELETED list from the CLOSED and OPEN lists.
It then sets the parent pointers of all states in the
DELETED list to NULL and their g-values to infin-
ity. In our example, G-FRA* sets the parent pointer
of C4 to NULL, determines the DELETED list to con-
tain B2, B3, C2 and C3 and deletes these states from
the OPEN and CLOSED lists. The CLOSED list now
contains B4, B5, B6, C4, C6, D4, E4 and F4, and the
OPEN list contains D6. The OPEN list is still incom-
plete since it contains only the states satisfying (O1)
so far. G-FRA* then sets the g-values of B2, B3, C2
and C3 to infinity and their parent pointers to NULL
(see Figure 1(c)).

• Step 3 (Terminating Early): If the current goal
state is in the CLOSED list, G-FRA* uses the par-
ent pointers to extract a cost-minimal path from the
current start state to the current goal state and ter-
minates the current search iteration. In our example,
G-FRA* executes the next steps since the current goal
state is not in the CLOSED list.

• Step 4 (Inserting States): G-FRA* adds those
states to the OPEN list that satisfy (O2), which makes
the OPEN list complete. G-FRA* then sets the par-
ent pointers of all states s added to the OPEN list
to the state s′ in the CLOSED list that minimizes
g(s′)+ c(s′, s) and sets their g-values to g(s′)+ c(s′, s)
for this state s′. In our example, G-FRA* adds B3
and C3 to the OPEN list, which now contains B3, C3
and D6. It sets the parent pointers of B3 and C3 to
B4 and C4, respectively, and their g-values to 4 and 3,
respectively (see Figure 1(d)).

• Step 5 (Starting A*): G-FRA* runs A* with the
OPEN and CLOSED lists, uses the parent pointers
to extract a cost-minimal path from the current start
state to the current goal state and terminates the cur-
rent search iteration.

3.3 D* Lite
D* Lite [6] is an incremental search algorithm that forms

the basis of the proposed search algorithms. D* Lite

69

01 function CalculateKey(s)
02 return [min(g(s), rhs(s)) + h(s, sgoal) + km; min(g(s), rhs(s))];

03 procedure Initialize()
04 OPEN := ∅;
05 km := 0;
06 for all s ∈ S
07 rhs(s) := g(s) := ∞;
08 par(s) := NULL;
09 sstart := the current state of the hunter;
10 sgoal := the current state of the target;
11 rhs(sstart) := 0;
12 OPEN.Insert(sstart,CalculateKey(sstart));

13 procedure UpdateState(u)
14 if (g(u) �= rhs(u) AND u ∈ OPEN)
15 OPEN.Update(u, CalculateKey(u));
16 else if (g(u) �= rhs(u) AND u /∈ OPEN)
17 OPEN.Insert(u, CalculateKey(u));
18 else if (g(u) = rhs(u) AND u ∈ OPEN)
19 OPEN.Delete(u);

20 procedure ComputeCostMinimalPath()
21 while (OPEN.TopKey() < CalculateKey(sgoal)

OR rhs(sgoal) > g(sgoal))
22 u := OPEN.Top();
23 kold := OPEN.TopKey();
24 knew :=CalculateKey(u);
25 if (kold < knew)
26 OPEN.Update(u,knew);
27 else if (g(u) > rhs(u))
28 g(u) := rhs(u);
29 OPEN.Delete(u);
30 for all s ∈ Succ(u)
31 if (s �= sstart AND (rhs(s) > g(u) + c(u, s)))
32 par(s) := u;
33 rhs(s) := g(u) + c(u, s);
34 UpdateState(s);
35 else
36 g(u) := ∞;
37 for all s ∈ Succ(u) ∪ {u}
38 if (s �= sstart AND par(s) = u)
39 rhs(s) := mins′∈Pred(s)(g(s′) + c(s′, s));

40 if (rhs(s) = ∞)
41 par(s) := NULL;
42 else
43 par(s) := arg mins′∈Pred(s)(g(s′) + c(s′, s));

44 UpdateState(s);

45 function Main()
46 Initialize();
47 while (sstart �= sgoal)
48 soldstart := sstart;
49 soldgoal := sgoal;
50 ComputeCostMinimalPath();
51 if (rhs(sgoal) = ∞) /*no path exists*/
52 return false;
53 identify a path from sstart to sgoal using the parent pointers;
54 while (target not caught AND target on path from sstart to sgoal

AND no edge costs changed)
55 hunter follows path from sstart to sgoal;
56 if hunter caught target
57 return true;
58 sstart := the current state of the hunter;
59 sgoal := the current state of the target;
60 km := km + h(soldgoal, sgoal);
61 if (soldstart �= sstart)
62 shift the map appropriately (which changes sstart and sgoal);
63 for all directed edges (u, v) with changed edge costs
64 cold := c(u, v);
65 update the edge cost c(u, v);
66 if (cold > c(u, v))
67 if (v �= sstart AND rhs(v) > g(u) + c(u, v))
68 par(v) := u;
69 rhs(v) := g(u) + c(u, v);
70 UpdateState(v);
71 else
72 if (v �= sstart AND par(v) = u)
73 rhs(v) := mins′∈Pred(v)(g(s′) + c(s′, v));

74 if (rhs(v) = ∞)
75 par(v) := NULL;
76 else
77 par(v) := arg mins′∈Pred(v)(g(s′) + c(s′, v));

78 UpdateState(v);
79 return true;

Figure 2: D* Lite for Moving Target Search

80 procedure BasicDeletion()
81 par(sstart) := NULL;
82 rhs(soldstart) := mins′∈Pred(soldstart)

(g(s′) + c(s′, soldstart));

83 if (rhs(soldstart) = ∞)
84 par(soldstart) := NULL;
85 else
86 par(soldstart) := arg mins′∈Pred(soldstart)

(g(s′) + c(s′, soldstart));

87 UpdateState(soldstart);

88 procedure OptimizedDeletion()
89 DELETED := ∅;
90 par(sstart) := NULL;
91 for all s ∈ S in the search tree but not the

subtree rooted at sstart

92 par(s) := NULL;
93 rhs(s) := g(s) := ∞;
94 if (s ∈ OPEN)
95 OPEN.Delete(s);
96 DELETED := DELETED ∪ {s};
97 for all s ∈ DELETED
98 for all s′ ∈ Pred(s)
99 if (rhs(s) > g(s′) + c(s′, s))

100 rhs(s) := g(s′) + c(s′, s);
101 par(s) := s′;
102 if (rhs(s) < ∞)
103 OPEN.Insert(s, CalculateKey(s));

Figure 3: (Basic) MT-D* Lite

solves sequences of search problems in dynamic environ-
ments where the start state does not change over time by
repeatedly transforming the previous search tree to the cur-
rent search tree. Researchers have extended it in a straight-
forward way to solve moving target search problems in dy-
namic environments by finding a cost-minimal path from the
current state of the hunter to the current state of the target
whenever the environment changes or the target moves off
the known path. In each search iteration, D* Lite first shifts
the map to keep the start state stationary (for example, it
shifts the map one unit south if the hunter moved one unit
north) and then updates the g-values and parent pointers of
states as necessary [8] until it has found a cost-minimal path
from the current state of the hunter to the current state of
the target. Figure 2 shows the pseudocode of such a version
of D* Lite.1 We explain only those parts of D* Lite that are
sufficient for understanding how to extend it to Moving Tar-
get D* Lite. D* Lite maintains an h-value, g-value, f-value
and parent pointer for every state s with similar meanings as
used by A* but it also maintain an rhs-value. The rhs-value
is defined to be

rhs(s) =

{
c if s = sstart (Eq. 1)

min
s′∈Pred(s)

(g(s′) + c(s′, s)) otherwise (Eq. 2)

where c = 0. Thus, the rhs-value is basically is a one-
step lookahead g-value. State s is called locally inconsistent
iff g(s) �= rhs(s). The f-value of state s is defined to be
min(g(s), rhs(s)) + h(s, sgoal). Finally, the parent pointer of
state s is defined to be

1The pseudocode uses the following functions to manage the
OPEN list: OPEN.Top() returns a state with the smallest pri-
ority of all states in the OPEN list. OPEN.TopKey() returns
the smallest priority of all states in the OPEN list. (If the
OPEN list is empty, then OPEN.TopKey() returns [∞;∞].)
OPEN.Insert(s, k) inserts state s into the OPEN list with pri-
ority k. OPEN.Update(s, k) changes the priority of state s in the
OPEN list to k. OPEN.Delete(s) deletes state s from the OPEN
list. Priorities are compared lexicographically. The minimum of
an empty set is infinity.

70

par(s) =

⎧⎪⎨
⎪⎩

NULL
if s = sstart OR
rhs(s) = ∞ (Eq. 3)

argmin
s′∈Pred(s)

(g(s′) + c(s′, s)) otherwise (Eq. 4)

which is exactly the definition used by A*.2 D* Lite also
maintains an OPEN list with a similar meaning as used by
A*. ComputeCostMinimalPath() determines a cost-minimal
path from the start state to the goal state. Before it is called,
states can have arbitrary g-values but their rhs-values and
parent pointers have to satisfy Eqs. 1-4 and the OPEN list
has to contain all locally inconsistent states. The runtime
of ComputeCostMinimalPath() is typically the higher the
more g-values it updates.

4. CONTRIBUTIONS
The blockage statuses of many states typically change

when D* Lite shifts the map to keep the start state sta-
tionary, which in turn changes the g-values of many states.
For example, B3 inherits the blockage status of A3 when D*
Lite shifts the map one unit south. Then, D* Lite updates
the g-values of many states, which makes it often slower
than running A* from scratch [8]. We therefore introduce
Basic Moving Target D* Lite (Basic MT-D* Lite) and Mov-
ing Target D* Lite (MT-D* Lite), two extensions of D* Lite
that solve moving target search problems in dynamic envi-
ronments without having to shift the map. We first describe
Basic MT-D* Lite and then MT-D* Lite, an optimization of
Basic MT-D* Lite that uses the principle behind G-FRA*
to speed it up.

4.1 Basic MT-D* Lite
Basic MT-D* Lite is an incremental search algorithm that

speeds up the version of D* Lite that shifts the map by
changing it slightly to avoid having to shift the map. Basic
MT-D* Lite solves moving target search problems in dy-
namic environments by finding a cost-minimal path with
ComputeCostMinimalPath() from the current state of the
hunter to the current state of the target whenever the en-
vironment changes or the target moves off the known path.
Figure 3 shows the necessary changes to the pseudocode
from Figure 2. Basic MT-D* Lite calls BasicDeletion() on
Line 62 instead of shifting the map. At this point in time,
the hunter has moved from the previous start state soldstart to
the current start state sstart. Before ComputeCostMinimal-
Path() is called again, the rhs-values and parent pointers of
all states have to satisfy Eqs. 1-4 and the OPEN list has
to contain all locally inconsistent states. Fortunately, the
rhs-values and parent pointers of all states already satisfy
these invariants, with the possible exception of the previous
and current start states. Basic MT-D* Lite therefore calcu-
lates the rhs-value of the previous start state (according to
Eq. 2 since it is no longer the current start state), its par-
ent pointer (according to Eqs. 3-4) and its membership in
the OPEN list on Lines 82-87. The correctness proofs of D*
Lite continue to hold if c is an arbitrary finite value in Eq.
1. instead of zero. Thus, the rhs-value of the current start

2D* Lite typically defines the parent pointers of both the start
state and states with rhs-values that are infinity differently be-
cause they are not really needed. We set them to NULL in prepa-
ration for Moving Target D* Lite that requires them to have this
value.

state can be an arbitrary finite value, including its current
rhs-value since its current rhs-value is finite.3 Basic MT-D*
Lite therefore does not calculate the rhs-value of the current
start state and its membership in the OPEN list and only
sets its parent pointer to NULL (according to Eq. 3) on Line
81.

Figure 4 illustrates the steps of Basic MT-D* Lite us-
ing the setup from Figure 1. The first search iteration of
Basic MT-D* Lite runs ComputeCostMinimalPath() from
the current state C2 of the hunter to the current state C6
of the target (see Figure 4(a)). The rhs-value of a state
is shown in its upper right corner. The cost-minimal path
is C2, C3, C4, B4, B5, B6 and C6. The hunter then moves
along the path to C4, the target moves off the path to D6 and
C5 becomes unblocked, which changes the costs c(C4,C5),
c(C5,C4), c(C5,C6), c(C6,C5), c(C5,B5) and c(B5,C5) from
infinity to one (see Figure 1(b)). Since the target moved off
the path and the environment changed, MT-D* Lite finds a
cost-minimal path from the current state C4 of the hunter to
the current state D6 of the target using the following steps.
Basic MT-D* Lite sets the parent pointer of the current start
state C4 to NULL, updates the rhs-value and parent pointer
of the previous start state C2 to 2 and C3, respectively, and
inserts C2 into the OPEN list (see Figure 1(c)). It then pro-
cesses the edges with changed edge costs, like D* Lite, and
runs ComputeCostMinimalPath(), which expands C2, B2,
C3, B3, C3, C5, B3, C2 and C6 (see Figures 4(d-l)). The
cost-minimal path is C4, C5, C6 and D6.

Basic MT-D* Lite can be optimized. When it runs Com-
puteCostMinimalPath(), the g-values of all states in the sub-
tree of the previous search tree rooted at the current start
state are based on the g-value of the current start state and
thus correct. The g-values of all other states in the previ-
ous search tree could be incorrect, in which case they are
too small. Basic MT-D* Lite updates the g-values of these
states by expanding them. When it expands one of them for
the first time, it sets its g-value to infinity. When it expands
the state a second time, it sets its g-value to the correct
value. In our example, the g-values of B2, B3, C3 and C4
could be incorrect. Basic MT-D* Lite expands all of them
to set their g-values to infinity and then expands all of them
again (except for B2) to set their g-values to the correct
value. Each state expansion is slow since Basic MT-D* Lite
iterates over all successors of the expanded state to update
their rhs-values (according to Eqs. 1-2), parent pointers (ac-
cording to Eqs. 3-4) and memberships in the OPEN list on
Lines 30-34 or 37-44. Basic MT-D* Lite also iterates over all
predecessors of each successor. Thus, each state expansion
can require n2 operations on n-neighbor gridworlds. Fur-
thermore, each state expansion manipulates the OPEN list,
which, if it is implemented as a binary heap, requires the
execution of heap operations to keep it sorted each time Ba-
sic MT-D* Lite expands a state since it needs to determine
the next state to expand, which is a state with the small-
est f -value in the OPEN list. We therefore optimize Basic
MT-D* Lite in the following.

4.2 MT-D* Lite
3The rhs-value of the current start state is finite because it is
on the cost-minimal path from the previous start state to the
previous goal state. The rhs-values of all states on this path are
no larger than the rhs-value of the previous goal state, which is
finite due to Line 51.

71

1 1 2 2 3 3 4 4 5 5

0 0 1 1 2 2 6
S G

3 3

4 4

5 5

5 6 7
A

1 2 3 4

B

C

D

E

F

G

(a) Search Iteration 1

1 1 2 2 3 3 4 4 5 5

0 0 1 1 2 2 6
S
3 3

G
4 4

5 5

1 2

D

E

F

G

7
A

B

C

3 4 5 6

(b) Target Moves off Path

1 1 2 2 3 3 4 4 5 5

0 2 1 1 2 2 3 6
S
3 3

G
4 4

5 5

1 2 7
A

B

C

3 4 5 6

D

E

F

G

(c) After BasicDeletion()

1 3 2 2 3 3 4 4 5 5

2 1 3 2 2 3 6
S
3 3

G
4 4

5 5

5 6 7
A

1 2 3 4

B

C

D

E

F

G

(d) After Expanding C2

3 2 2 3 3 4 4 5 5

2 1 3 2 2 3 6
S
3 3

G
4 4

5 5

1 2 7
A

B

C

3 4 5 6

D

E

F

G

(e) After Expanding B2

3 2 4 3 3 4 4 5 5

3 2 2 3 6
S
3 3

G
4 4

5 5

5 6 7
A

1 2 3 4

B

C

D

E

F

G

(f) After Expanding C3

4 3 3 4 4 5 5

3 2 2 3 6
S
3 3

G
4 4

5 5

1 2 7
A

B

C

3 4 5 6

D

E

F

G

(g) After Expanding B3

4 3 3 4 4 5 5

4 3 3 2 2 3 6
S
3 3

G
4 4

5 5

5 6 7
A

1 2 3 4

B

C

D

E

F

G

(h) After Expanding C3

4 3 3 4 4 5 5

4 3 3 2 2 3 3 4
S
3 3

G
4 4

5 5

1 2 7
A

B

C

3 4 5 6

D

E

F

G

(i) After Expanding C5

5 4 4 3 3 4 4 5 5

4 3 3 2 2 3 3 4
S
3 3

G
4 4

5 5

5 6 7
A

1 2 3 4

B

C

D

E

F

G

(j) After Expanding B3

5 4 4 3 3 4 4 5 5

4 4 3 3 2 2 3 3 4
S
3 3

G
4 4

5 5

1 2 7
A

B

C

3 4 5 6

D

E

F

G

(k) After Expanding C2

5 4 4 3 3 4 4 5 5

4 4 3 3 2 2 3 3 4 4
S
3 3 5

G
4 4

5 5

7
A

5 6

B

C

3 41 2

D

E

F

G

(l) After Expanding C6

Figure 4: Trace of (Basic) MT-D* Lite

MT-D* Lite is an incremental search algorithm that is an
optimized version of Basic MT-D* Lite. MT-D* Lite oper-
ates in the same way as Basic MT-D* Lite except that it re-
places BasicDeletion() with a more sophisticated procedure.
Figure 3 shows the necessary changes to the pseudocode
from Figure 2. Basic MT-D* Lite calls OptimizedDeletion()
on Line 62 instead of shifting the map. Basic MT-D* Lite
lazily expands the states in the previous search tree that are
not in the subtree rooted at the current start state one at a
time to set their g-values to infinity when needed. Whenever
it sets the g-value of a state to infinity, it needs to update the
rhs-values, parent pointers and memberships in the OPEN
list for all successors of the state. MT-D* Lite, on the other
hand, eagerly uses a specialized procedure that operates in
two phases. MT-D* Lite maintains a DELETED list, which
contains all states in the previous search tree that are not
in the subtree rooted at the current start state, which is ex-
actly the definition that G-FRA* uses. First, MT-D* Lite
sets the parent pointer of the current start state to NULL
on Line 90. Then, Phase 1 on Lines 91-96 eagerly sets the
g-values of all states in the DELETED list to infinity in
one pass. Finally, Phase 2 on Lines 97-103 updates the rhs-
values, parent pointers and memberships in the OPEN list
of all potentially affected states in one pass, which are the
states in the DELETED list. Their rhs-values, parent point-

ers and memberships in the OPEN list can be updated in
one pass since they depend only on the g-values of their pre-
decessors, which do not change in Phase 2. If the g-values of
all predecessors are infinity, which is likely the case for many
of these states due to Phase 1, their rhs-values have to be
updated to infinity, their parent pointers have to be updated
to NULL and they have to be deleted from the OPEN list
since they are not locally inconsistent. Phase 1 therefore sets
the rhs-values of all states in the DELETED list to infinity,
their parent pointers to NULL and removes them from the
OPEN list. Phase 2 then only updates the rhs-values (ac-
cording to Eqs. 1-2) and parent pointers (according to Eqs.
3-4) of the few exceptions and inserts them into the OPEN
list if they are locally inconsistent. Overall, Phase 1 is thus
similar to Step 2 (Deleting States) of G-FRA*, and Phase 2
is similar to Step 4 (Inserting States) of G-FRA*. The run-
times of both phases are small. Phases 1 and 2 iterate over
all states in the DELETED list. Phase 2 also iterates over
all predecessors of the states in the DELETED list. Thus,
each state in the DELETED list can require n operations on
n-neighbor gridworlds. Both phases manipulate the OPEN
list, which, if it is implemented as a binary heap, requires
the execution of heap operations to keep it sorted only once,
namely at the end of Phase 2, since it can remain unsorted
until then.

72

searches moves expanded deleted runtime
per per states states per

test case test case per search per search search
A* 387 688 14013 (31.2) 7250
Differential A* 387 688 14013 (40.1) 9533
GAA* 387 688 12351 (28.2) 6002
FRA* 391 688 515 (13.0) 362 (11.6) 397
G-FRA* 392 688 716 (10.6) 534 (16.1) 501
Basic MT-D* Lite 391 688 2443 (13.7) 2625
MT-D* Lite 392 688 1377 (10.8) 1380 (37.6) 1559

Table 1: Static Environments

Figure 4 illustrates the steps of MT-D* Lite using the
setup from Figure 1. The only difference from the steps of
Basic MT-D* Lite is that MT-D* Lite does not perform the
state expansions from Figures 4(c-g). Instead, Optimized-
Deletion() updates the rhs-values, parent pointers and mem-
berships in the OPEN list of all states in the DELETED list,
which contains B2, B3, C2 and C3 (see Figure 4(g)). The
remaining state expansions are the same as the ones of Basic
MT-D* Lite (see Figures 4(h-l)).

5. EXPERIMENTAL RESULTS
We now compare Basic Moving Target D* Lite (Basic MT-

D* Lite) and Moving Target D* Lite (MT-D* Lite) against
A*, Differential A*, Generalized Adaptive A* (GAA*),
Fringe-Retrieving A* (FRA*) and Generalized FRA* (G-
FRA*) for solving moving target search problems. For fair-
ness, we use comparable implementations. For example, all
search algorithms implement the OPEN list as binary heap
and find a cost-minimal path from the current state of the
hunter to the current state of the target whenever the envi-
ronment changes or the target moves off the known path.

We perform our experiments in four-neighbor gridworlds
of size 1000× 1000 with 25 percent randomly blocked states
and randomly chosen start and goal states. We average our
experimental results over the same 1000 test cases for each
search algorithm. The hunter always knows the blockage sta-
tuses of all states. The target always follows a cost-minimal
path from its current state to a randomly selected unblocked
state and repeats the process whenever it reaches that state
or cannot move due to its path being blocked. The target
skips every tenth move to ensure that the hunter catches it.
We perform the experiments in two different environments.
In static environments, the blockage statuses of states does
not change. In dynamic environments, we randomly block
k unblocked states and unblock k blocked states after every
move of the hunter in a way that ensures that there always
exists a path from the current state of the hunter to the
current state of the target. We vary k from 1 to 1000. We
use the Manhattan distances as consistent h-values.

We report two measures for the difficulty of the mov-
ing target search problems, namely the average number of
searches and the average number of moves of the hunter un-
til it catches the target. These values vary slightly among
the search algorithms due to their different ways of break-
ing ties among several cost-minimal paths. We report two
measures for the efficiency of the search algorithms, namely
the average number of expanded states per search and the
average runtime per search in microseconds on a Pentium
D 3.0 Ghz PC with 2 GByte of RAM. We also report the
average number of deleted states (from the search tree) per
search for FRA*, G-FRA* and MT-D* Lite. Finally, we re-
port the standard deviation of the mean for the number of
expanded and deleted states per search (in parentheses) to
demonstrate the statistical significance of our results.

searches moves expanded deleted runtime
per per states states per

test case test case per search per search search
A* 682 682 16961 (91.0) 7621
Differential A* 682 682 16961 (91.0) 10524
GAA* 694 694 12774 (75.0) 4911
Basic MT-D* Lite 682 682 1708 (26.2) 1856
MT-D* Lite 682 682 915 (19.5) 925 (9.1) 990

k = 1

A* 679 679 16814 (90.8) 7544
Differential A* 679 679 16814 (90.8) 10432
GAA* 692 692 13123 (78.9) 5163
Basic MT-D* Lite 678 678 1716 (26.2) 1872
MT-D* Lite 678 678 923 (19.6) 929 (9.2) 997

k = 10

A* 677 677 16594 (89.5) 7444
Differential A* 677 677 16594 (89.5) 10293
GAA* 691 691 13174 (78.3) 5342
Basic MT-D* Lite 677 677 1730 (26.8) 1921
MT-D* Lite 677 677 960 (20.5) 916 (9.1) 1075

k = 100

A* 681 681 16652 (89.1) 7520
Differential A* 681 681 16652 (89.1) 10318
GAA* 693 693 13389 (81.8) 6370
Basic MT-D* Lite 680 680 2073 (31.7) 2494
MT-D* Lite 681 681 1348 (28.7) 899 (9.1) 1592

k = 1000

Table 2: Dynamic Environments

Tables 1 and 2 show our experimental results in static and
dynamic environments, respectively. The version of D* Lite
that shifts the map is not included in the tables because it
has been shown to be an order of magnitude slower than A*
and is thus not competitive [13]. D* is not included in the
tables because it has been shown to be about as efficient as
D* Lite [7]. FRA* and G-FRA* are not included in Table 2
because they cannot solve moving target search problems in
dynamic environments. We make the following observations:

• In dynamic environments, A* and Differential A* have
runtimes that are independent of k because they con-
struct their search trees from scratch and thus expand
about the same number of states per search indepen-
dent of k.

• In dynamic environments, GAA* has a runtime that
increases with k because it uses a consistency proce-
dure to update the h-values of those states whose h-
values become inconsistent due to states becoming un-
blocked and the number of such states increases with
k [12].

• In dynamic environments, Basic MT-D* Lite and D*
Lite have runtimes that increase with k because they
update more g-values as k increases and hence expand
more states per search.

• In both static and dynamic environments, A* has a
smaller runtime than Differential A* because Differen-
tial A* constructs its current search tree from scratch
and thus expands the same number of states per search
as A* but also deletes all states from the previous
search tree.

• In both static and dynamic environments, GAA* has
a smaller runtime than A* because GAA* updates the
h-values to make them more informed over time and
hence expands fewer states per search.

73

• In static environments, G-FRA* has a smaller runtime
than A* because G-FRA* does not expand the states
in the subtree of the previous search tree rooted at the
current start state. A*, on the other hand, expands
some of these states.

• In both static and dynamic environments, Basic MT-
D* Lite and MT-D* Lite have smaller runtimes than
GAA* because GAA* constructs its current search tree
from scratch. Basic MT-D* Lite and D* Lite, on the
other hand, reuse the previous search tree and hence
expand fewer states per search.

• In both static and dynamic environments, MT-D* Lite
has a smaller runtime than Basic MT-D* Lite because
Basic MT-D* Lite expands the states in the previous
search tree that are not in the subtree rooted at the
current start state to set their g-values to infinity. MT-
D* Lite, on the other hand, uses OptimizedDeletion()
instead, which runs faster and results in only a slightly
larger number of deleted and expanded states.

• In static environments, FRA* and G-FRA* have
smaller runtimes than Basic MT-D* Lite and MT-D*
Lite because of two reasons: (1) FRA* and G-FRA*
have a smaller runtime per state expansion than Ba-
sic MT-D* Lite and MT-D* Lite. For example, the
approximate overhead per state expansion (calculated
by dividing the runtime per search by the number
of expanded states per search) is 0.77 and 0.71 mi-
croseconds for FRA* and G-FRA*, respectively, while
the approximate overhead per state expansion is 1.07
and 1.13 microseconds for Basic MT-D* Lite and MT-
D* Lite, respectively. (2) FRA* and G-FRA* expand
fewer states than Basic MT-D* Lite and MT-D* Lite
in the following case: If the target moves to a state
in the subtree of the previous search tree that rooted
at the current start state, FRA* and G-FRA* termi-
nate without expanding states due to Step 3 (Termi-
nating Early). Basic MT-D* Lite and MT-D* Lite, on
the other hand, expand all locally inconsistent states
whose f -values are smaller than the f -value of the goal
state.

• In static environments, FRA* has a smaller runtime
than G-FRA* because G-FRA* reuses only the subtree
of the previous search tree rooted at the current start
state. FRA*, on the other hand, uses an optimization
step for gridworlds, described in [13], that allows it to
reuse more of the previous search tree. Thus, FRA*
deletes and expands fewer states per search.

Overall, FRA* has the smallest runtime in static envi-
ronments, and MT-D* Lite has the smallest runtime in dy-
namic environments, where it is four to five times faster than
GAA*.

6. CONCLUSIONS
Existing incremental search algorithms are slow on mov-

ing target search problems in dynamic environments. In
this paper, we therefore introduced MT-D* Lite, an exten-
sion of D* Lite that uses the principle behind Generalized
Fringe-Retrieving A* to solve moving target search prob-
lems in dynamic environments fast. We demonstrated ex-
perimentally that MT-D* Lite is four to five times faster

than Generalized Adaptive A*, which so far was believed to
be the fastest incremental search algorithm for solving mov-
ing target search problems in dynamic environments. It is
future work to investigate how to speed up the computation
of more sophisticated strategies for the hunter [17].

7. REFERENCES
[1] V. Bulitko, Y. Bjornsson, M. Luvstrek, J. Schaeffer,

and S. Sigmundarson. Dynamic control in
path-planning with real-time heuristic search. In
Proceedings of ICAPS, pages 49–56, 2007.

[2] V. Bulitko, N. Sturtevant, J. Lu, and T. Yau. Graph
abstraction in real-time heuristic search. Journal of
Artificial Intelligence Research, 30(1):51–100, 2007.

[3] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and
Cybernetics, 2:100–107, 1968.

[4] R. Holte, T. Mkadmi, R. Zimmer, and A. MacDonald.
Speeding up problem solving by abstraction: A graph
oriented approach. Artificial Intelligence,
85(1–2):321–361, 1996.

[5] T. Ishida and R. Korf. Moving target search. In
Proceedings of IJCAI, pages 204–211, 1991.

[6] S. Koenig and M. Likhachev. D* Lite. In Proceedings
of AAAI, pages 476–483, 2002.

[7] S. Koenig and M. Likhachev. Fast replanning for
navigation in unknown terrain. Transaction on
Robotics, 21(3):354–363, 2005.

[8] S. Koenig, M. Likhachev, and X. Sun. Speeding up
moving-target search. In Proceedings of AAMAS,
pages 1136–1143, 2007.

[9] C. Moldenhauer and N. Sturtevant. Optimal solutions
for moving target search (Extended Abstract). In
Proceedings of AAMAS, pages 1249–1250, 2009.

[10] J. Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, 1985.

[11] A. Stentz. The focussed D* algorithm for real-time
replanning. In Proceedings of IJCAI, pages 1652–1659,
1995.

[12] X. Sun, S. Koenig, and W. Yeoh. Generalized
Adaptive A*. In Proceedings of AAMAS, pages
469–476, 2008.

[13] X. Sun, W. Yeoh, and S. Koenig. Efficient incremental
search for moving target search. In Proceedings of
IJCAI, pages 615–620, 2009.

[14] X. Sun, W. Yeoh, and S. Koenig. Generalized
Fringe-Retrieving A*: Faster moving-target search on
state lattices. In Proceedings of AAMAS, 2010.

[15] K. Trovato and L. Dorst. Differential A*. IEEE
Transactions on Knowledge and Data Engineering,
14(6):1218–1229, 2002.

[16] C. Undeger and F. Polat. Real-time edge follow: A
real-time path search approach. IEEE Transactions on
Systems, Man, and Cybernetics, Part C,
37(5):860–872, 2007.

[17] C. Undeger and F. Polat. Multi-agent real-time
pursuit. Autonomous Agents and Multi-Agent
Systems, pages 1–39, 2009.

74

